3.462 \(\int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=108 \[ -\frac {2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {x}{b^2} \]

[Out]

x/b^2-2*a*(a^2-2*b^2)*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(3/2)/b^2/(a+b)^(3/2)/d-a^2*sin
(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2790, 2735, 2659, 205} \[ -\frac {2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac {a^2 \sin (c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {x}{b^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]

[Out]

x/b^2 - (2*a*(a^2 - 2*b^2)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a - b)^(3/2)*b^2*(a + b)^(3/2
)*d) - (a^2*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2790

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2 - b^2)), x] - Di
st[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(2*b*c*d - a*(c^2 + d^2)) + (a^2
*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1) + c^2*(m + 2)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=-\frac {a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\int \frac {a b+\left (a^2-b^2\right ) \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac {x}{b^2}-\frac {a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\left (a \left (a^2-2 b^2\right )\right ) \int \frac {1}{a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=\frac {x}{b^2}-\frac {a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\left (2 a \left (a^2-2 b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 \left (a^2-b^2\right ) d}\\ &=\frac {x}{b^2}-\frac {2 a \left (a^2-2 b^2\right ) \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}-\frac {a^2 \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.41, size = 103, normalized size = 0.95 \[ \frac {-\frac {2 a \left (a^2-2 b^2\right ) \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}-\frac {a^2 b \sin (c+d x)}{(a-b) (a+b) (a+b \cos (c+d x))}+c+d x}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(a + b*Cos[c + d*x])^2,x]

[Out]

(c + d*x - (2*a*(a^2 - 2*b^2)*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^2 + b^2)^(3/2) - (a^2*
b*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/(b^2*d)

________________________________________________________________________________________

fricas [B]  time = 1.41, size = 470, normalized size = 4.35 \[ \left [\frac {2 \, {\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) + 2 \, {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x - {\left (a^{4} - 2 \, a^{2} b^{2} + {\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \, {\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}}, \frac {{\left (a^{4} b - 2 \, a^{2} b^{3} + b^{5}\right )} d x \cos \left (d x + c\right ) + {\left (a^{5} - 2 \, a^{3} b^{2} + a b^{4}\right )} d x - {\left (a^{4} - 2 \, a^{2} b^{2} + {\left (a^{3} b - 2 \, a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (a^{4} b - a^{2} b^{3}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*(a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + 2*(a^5 - 2*a^3*b^2 + a*b^4)*d*x - (a^4 - 2*a^2*b^2 + (a^3
*b - 2*a*b^3)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-
a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) -
 2*(a^4*b - a^2*b^3)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)
*d), ((a^4*b - 2*a^2*b^3 + b^5)*d*x*cos(d*x + c) + (a^5 - 2*a^3*b^2 + a*b^4)*d*x - (a^4 - 2*a^2*b^2 + (a^3*b -
 2*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x + c))) - (a^4*b
- a^2*b^3)*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d)]

________________________________________________________________________________________

giac [A]  time = 0.58, size = 175, normalized size = 1.62 \[ -\frac {\frac {2 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{2} b - b^{3}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )}} - \frac {2 \, {\left (a^{3} - 2 \, a b^{2}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt {a^{2} - b^{2}}} - \frac {d x + c}{b^{2}}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*a^2*tan(1/2*d*x + 1/2*c)/((a^2*b - b^3)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)) - 2
*(a^3 - 2*a*b^2)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1
/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^2*b^2 - b^4)*sqrt(a^2 - b^2)) - (d*x + c)/b^2)/d

________________________________________________________________________________________

maple [B]  time = 0.06, size = 200, normalized size = 1.85 \[ -\frac {2 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d b \left (a^{2}-b^{2}\right ) \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}-\frac {2 a^{3} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,b^{2} \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {4 a \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \left (a -b \right ) \left (a +b \right ) \sqrt {\left (a -b \right ) \left (a +b \right )}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d \,b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x)

[Out]

-2/d*a^2/b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)-2/d*a^3/b^2/(a-b)/
(a+b)/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+4/d*a/(a-b)/(a+b)/((a-b)*(a+b))
^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))+2/d/b^2*arctan(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 6.21, size = 2872, normalized size = 26.59 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2/(a + b*cos(c + d*x))^2,x)

[Out]

(2*atan((((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) - (tan(c/2
+ (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2*
b^3 - a^3*b^2)))*1i)/b^2 + (32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5
*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2))/b^2 - ((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a
*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5
 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2*b^3 - a^3*b^2)))*1i)/b^2 - (32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b
- 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2))/b^2)/((64*(2*a*b^4 -
a^4*b + a^5 + 2*a^2*b^3 - 3*a^3*b^2))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3
*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) - (tan(c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7
+ 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 - a^2*b^3 - a^3*b^2)))*1i)/b^2 + (32*tan(c/2 + (d*
x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2)
)*1i)/b^2 + (((((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (tan(
c/2 + (d*x)/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4)*32i)/(b^2*(a*b^4 + b^5 -
a^2*b^3 - a^3*b^2)))*1i)/b^2 - (32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3
 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2))*1i)/b^2)))/(b^2*d) + (a*atan(((a*(a^2 - 2*b^2)*(-(a + b)^3*(
a - b)^3)^(1/2)*((32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))
/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) + (a*(a^2 - 2*b^2)*((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a
*b^5 + b^6 - a^2*b^4 - a^3*b^3) - (32*a*tan(c/2 + (d*x)/2)*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*a*b^9
 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4))/((a*b^4 + b^5 - a^2*b^3 - a^3*b^2)*(b^8 - 3*a^2
*b^6 + 3*a^4*b^4 - a^6*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2))/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2))*1i)/(b^8
- 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2) + (a*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*((32*tan(c/2 + (d*x)/2)*(2*
a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) - (a*(a^
2 - 2*b^2)*((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (32*a*tan
(c/2 + (d*x)/2)*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^
5*b^5 - 2*a^6*b^4))/((a*b^4 + b^5 - a^2*b^3 - a^3*b^2)*(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))*(-(a + b)^3*(
a - b)^3)^(1/2))/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2))*1i)/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2))/((64*(2
*a*b^4 - a^4*b + a^5 + 2*a^2*b^3 - 3*a^3*b^2))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (a*(a^2 - 2*b^2)*(-(a + b)^
3*(a - b)^3)^(1/2)*((32*tan(c/2 + (d*x)/2)*(2*a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^
2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) + (a*(a^2 - 2*b^2)*((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))
/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) - (32*a*tan(c/2 + (d*x)/2)*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*a*
b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^5*b^5 - 2*a^6*b^4))/((a*b^4 + b^5 - a^2*b^3 - a^3*b^2)*(b^8 - 3*
a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2))/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))/(b^8
- 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2) - (a*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*((32*tan(c/2 + (d*x)/2)*(2*
a^6 - 2*a^5*b - 2*a*b^5 + b^6 + 3*a^2*b^4 + 4*a^3*b^3 - 5*a^4*b^2))/(a*b^4 + b^5 - a^2*b^3 - a^3*b^2) - (a*(a^
2 - 2*b^2)*((32*(2*a*b^8 - b^9 + a^2*b^7 - 3*a^3*b^6 + a^5*b^4))/(a*b^5 + b^6 - a^2*b^4 - a^3*b^3) + (32*a*tan
(c/2 + (d*x)/2)*(a^2 - 2*b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*(2*a*b^9 - 2*a^2*b^8 - 4*a^3*b^7 + 4*a^4*b^6 + 2*a^
5*b^5 - 2*a^6*b^4))/((a*b^4 + b^5 - a^2*b^3 - a^3*b^2)*(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))*(-(a + b)^3*(
a - b)^3)^(1/2))/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))/(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)))*(a^2 - 2*
b^2)*(-(a + b)^3*(a - b)^3)^(1/2)*2i)/(d*(b^8 - 3*a^2*b^6 + 3*a^4*b^4 - a^6*b^2)) - (2*a^2*tan(c/2 + (d*x)/2))
/(d*(a + b)*(a*b - b^2)*(a + b + tan(c/2 + (d*x)/2)^2*(a - b)))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________